Energy News
ENERGY TECH
MIT spinout Commonwealth Fusion Systems unveils plans for the world's first fusion power plant
illustration only
MIT spinout Commonwealth Fusion Systems unveils plans for the world's first fusion power plant
by Zach Winn | MIT News
Boston MA (SPX) Dec 18, 2024

America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world's first grid-scale fusion power plant in Chesterfield County, Virginia.

The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion - the reaction that powers the sun - since its founders first conceived of their approach in an MIT classroom in 2012. CFS is now commercializing a suite of advanced technologies developed in MIT research labs.

"This moment exemplifies the power of MIT's mission, which is to create knowledge that serves the nation and the world, whether via the classroom, the lab, or out in communities," MIT Vice President for Research Ian Waitz says. "From student coursework 12 years ago to today's announcement of the siting in Virginia of the world's first fusion power plant, progress has been amazingly rapid. At the same time, we owe this progress to over 65 years of sustained investment by the U.S. federal government in basic science and energy research."

The new fusion power plant, named ARC, is expected to come online in the early 2030s and generate about 400 megawatts of clean, carbon-free electricity - enough energy to power large industrial sites or about 150,000 homes.

The plant will be built at the James River Industrial Park outside of Richmond through a nonfinancial collaboration with Dominion Energy Virginia, which will provide development and technical expertise along with leasing rights for the site. CFS will independently finance, build, own, and operate the power plant.

The plant will support Virginia's economic and clean energy goals by generating what is expected to be billions of dollars in economic development and hundreds of jobs during its construction and long-term operation.

More broadly, ARC will position the U.S. to lead the world in harnessing a new form of safe and reliable energy that could prove critical for economic prosperity and national security, including for meeting increasing electricity demands driven by needs like artificial intelligence.

"This will be a watershed moment for fusion," says CFS co-founder Dennis Whyte, the Hitachi America Professor of Engineering at MIT. "It sets the pace in the race toward commercial fusion power plants. The ambition is to build thousands of these power plants and to change the world."

Fusion can generate energy from abundant fuels like hydrogen and lithium isotopes, which can be sourced from seawater, and leave behind no emissions or toxic waste. However, harnessing fusion in a way that produces more power than it takes in has proven difficult because of the high temperatures needed to create and maintain the fusion reaction. Over the course of decades, scientists and engineers have worked to make the dream of fusion power plants a reality.

In 2012, teaching the MIT class 22.63 (Principles of Fusion Engineering), Whyte challenged a group of graduate students to design a fusion device that would use a new kind of superconducting magnet to confine the plasma used in the reaction. It turned out the magnets enabled a more compact and economic reactor design. When Whyte reviewed his students' work, he realized that could mean a new development path for fusion.

Since then, a huge amount of capital and expertise has rushed into the once fledgling fusion industry. Today there are dozens of private fusion companies around the world racing to develop the first net-energy fusion power plants, many utilizing the new superconducting magnets. CFS, which Whyte founded with several students from his class, has attracted more than $2 billion in funding.

"It all started with that class, where our ideas kept evolving as we challenged the standard assumptions that came with fusion," Whyte says. "We had this new superconducting technology, so much of the common wisdom was no longer valid. It was a perfect forum for students, who can challenge the status quo."

Since the company's founding in 2017, it has collaborated with researchers in MIT's Plasma Science and Fusion Center (PFSC) on a range of initiatives, from validating the underlying plasma physics for the first demonstration machine to breaking records with a new kind of magnet to be used in commercial fusion power plants. Each piece of progress moves the U.S. closer to harnessing a revolutionary new energy source.

CFS is currently completing development of its fusion demonstration machine, SPARC, at its headquarters in Devens, Massachusetts. SPARC is expected to produce its first plasma in 2026 and net fusion energy shortly after, demonstrating for the first time a commercially relevant design that will produce more power than it consumes. SPARC will pave the way for ARC, which is expected to deliver power to the grid in the early 2030s.

"There's more challenging engineering and science to be done in this field, and we're very enthusiastic about the progress that CFS and the researchers on our campus are making on those problems," Waitz says. "We're in a 'hockey stick' moment in fusion energy, where things are moving incredibly quickly now. On the other hand, we can't forget about the much longer part of that hockey stick, the sustained support for very complex, fundamental research that underlies great innovations. If we're going to continue to lead the world in these cutting-edge technologies, continued investment in those areas will be crucial."

Related Links
Commonwealth Fusion Systems
Plasma Science and Fusion Center
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Improving fusion plasma predictions with multi-fidelity data science models
Tokyo, Japan (SPX) Dec 16, 2024
The quest for fusion energy, a potential solution to global energy challenges, has advanced through innovative approaches to plasma performance prediction. Magnetic confinement fusion reactors rely on intricate systems that confine high-temperature plasma within powerful magnetic fields. While this effort integrates technologies like superconducting magnets and advanced heating devices, understanding and predicting plasma behavior remains a significant scientific challenge. Energy and particle tra ... read more

ENERGY TECH
Significant progress in engineering biology for clean energy

Breakthrough in sustainable energy with photochemical water oxidation

IATA chief says sustainable plane fuel supply not enough

From chip shop grease to efficient fuel alternative

ENERGY TECH
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency

SFU report calls for Canada to prioritize large-scale solar power projects

Training solar panels to adapt to wind conditions

New solar material advances green hydrogen production

ENERGY TECH
BP to 'significantly reduce' renewables investment

Baltic Sea wind farms impair Sweden's defence, says military

Sweden blocks 13 offshore wind farms over defence concerns

Sweden's defence concerned by planned offshore wind power

ENERGY TECH
'Dark lull' in German energy transition sparks political debate

Iran extends school closures in Tehran amid fuel shortages

Russia says 'massive' strike on Ukraine a response to Kyiv's ATACMS use

Brazil trumpets emission cut plans at UN top court

ENERGY TECH
Stor4Build heats up thermal energy storage solutions for buildings, grid

Plasma heating efficiency in fusion devices boosted by metal screens

How everyday activities inside your home can generate energy

Pioneering advancements in solid-state battery technology for energy storage

ENERGY TECH
Air pollution in India tied to significant mortality rates

Japan inspects US air base over chemical spill

Somalia struggles to rid itself of plastic despite ban

Russian beach town declares emergency over oil spill

ENERGY TECH
Climate chemistry model finds "non-negligible" impacts of potential hydrogen fuel leakage

Aeromon achieves ISO 17025 accreditation for advanced emissions monitoring and flare efficiency analysis

Ukraine strikes Russian oil refinery, triggering fire

Hydrogen-powered truck breaks record, travels 1,800 miles on single fill

ENERGY TECH
NASA honours Algerian parks with Martian namesakes

Anthropologists urge preservation of human artifacts on Mars

New study questions the potential for liquid brines on Mars

NASA Outlines Latest Moon to Mars Plans in 2024 Architecture Update

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.