Subscribe free to our newsletters via your
. Nuclear Energy News .




CIVIL NUCLEAR
Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments
by Staff Writers
Washington DC (SPX) Jul 01, 2014


An artist's rendering of the fiber optic flow sensor. The glowing red sections along the optical fiber are the sensors--hundreds of these sensors can be packed into a single fiber. Image courtesy Kevin Chen and University of Pittsburgh.

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the University of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 degrees Celsius.

This technology is expected to find industrial sensing applications in harsh environments ranging from deep geothermal drill cores to the interiors of nuclear reactors to the cold vacuum of space missions, and it may eventually be extended to many others.

The team describes their all-optical approach in a paper published in The Optical Society's (OSA) journal Optics Letters. They successfully demonstrated simultaneous flow/temperature sensors at 850 C, which is a 200 C improvement on an earlier notable demonstration of MEMS-based sensors by researchers at Oak Ridge National Laboratory.

The basic concept of the new approach involves integrating optical heating elements, optical sensors, an energy delivery cable and a signal cable within a single optical fiber. Optical power delivered by the fiber is used to supply energy to the heating element, while the optical sensor within the same fiber measures the heat transfer from the heating element and transmits it back.

"We call it a 'smart optical fiber sensor powered by in-fiber light'," said Kevin P. Chen, an associate professor and the Paul E. Lego Faculty Fellow in the University of Pittsburgh's Department of Electrical and Computer Engineering.

The team's work expands the use of fiber-optic sensors well beyond traditional applications of temperature and strain measurements. "Tapping into the energy carried by the optical fiber enables fiber sensors capable of performing much more sophisticated and multifunctional types of measurements that previously were only achievable using electronic sensors," Chen said.

In microgravity situations, for example, it's difficult to measure the level of liquid hydrogen fuel in tanks because it doesn't settle at the bottom of the tank. It's a challenge that requires the use of many electronic sensors-a problem Chen initially noticed years ago while visiting NASA, which was the original inspiration to develop a more streamlined and efficient approach.

"For this type of microgravity situation, each sensor requires wires, a.k.a. 'leads,' to deliver a sensing signal, along with a shared ground wire," explained Chen. "So it means that many leads-often more than 40-are necessary to get measurements from the numerous sensors. I couldn't help thinking there must be a better way to do it."

It turned out, there is. The team looked to optical-fiber sensors, which are one of the best sensor technologies for use in harsh environments thanks to their extraordinary multiplexing capabilities and immunity to electromagnetic interference. And they were able to pack many of these sensors into a single fiber to reduce or eliminate the wiring problems associated with having numerous leads involved.

"Another big challenge we addressed was how to achieve active measurements in fiber," Chen said.

"If you study optical fiber, it's a cable for signal transmission but one that can also be used for energy delivery-the same optical fiber can deliver both signal and optical power for active measurements. It drastically improves the sensitivity, functionality, and agility of fiber sensors without compromising the intrinsic advantages of fiber-optic sensors. That's the essence of our work."

Based on the same technology, highly sensitive chemical sensors can also be developed for cryogenic environments. "The optical energy in-fiber can be tapped to locally heated in-fiber chemical sensors to enhance its sensitivity," Chen said.

"In-fiber optical power can also be converted into ultrasonic energy, microwave or other interesting applications because tens or hundreds of smart sensors can be multiplexed within a single fiber. It just requires placing one fiber in the gas flow stream-even in locations with strong magnetic interference."

Next, the team plans to explore common engineering devices that are often taken for granted and search for ways to enhance them. "For fiber sensors, we typically view the fiber as a signal-carrying cable. But if you look at it from a fiber sensor perspective, does it really need to be round or a specific size? Is it possible that another size or shape might better suit particular applications? As a superior optical cable, is it also possible to carry other types of energy along the fibers for long-distance and remote sensing?" Chen noted. "These are questions we'll address."

Paper: "Fiber-optic flow sensors for high-temperature-environment operation up to 800 C," R. Chen at al., Optics Letters, Vol. 39, Issue 13, pp. 3966-3969 (2014).

.


Related Links
The Optical Society
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CIVIL NUCLEAR
Fukushima operator eyes wholesale power market in Europe: report
Tokyo (AFP) June 26, 2014
The operator of Japan's crippled Fukushima nuclear power plant wants to start operations in Britain and elsewhere in Europe, a report said Thursday, as it looks for ways to offset the huge costs of the disaster. Tokyo Electric Power Co. (TEPCO) will set up a joint venture in Britain by March 2016 with another Japanese company to make large-scale power storage facilities, the Nikkei said, as ... read more


CIVIL NUCLEAR
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

CIVIL NUCLEAR
SCIGRIP Solar Boat Successfully Completes Sea Trials

KYOCERA's Accumulated Solar Module Production Exceeds 5GW

Q CELLS and Martifer Solar Team Up in 30 MW Module Supply

Solar Supply Chain Revenue Expected Grow 24 Percent 2nd Half of 2014

CIVIL NUCLEAR
VentAir Introduces Groundbreaking Wind Energy Innovation

Offshore wind dominates British renewable power sector

Scotland boasts of financial weight behind climate change fight

Massachusetts to host sixth U.S. lease for offshore wind energy

CIVIL NUCLEAR
Malware aims at US, Europe energy sector: researchers

Net energy analysis should become a standard policy tool

New voluntary measure aimed at protecting U.S. energy from cyberattacks

Zimbabwe switches $1.3 bn China power tender: minister

CIVIL NUCLEAR
Israeli companies order Aura's power generation system

Study helps unlock mystery of high-temp superconductors

Cambridge team breaks superconductor world record

Researchers developing cheap, better-performing lithium-ion batteries

CIVIL NUCLEAR
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

CIVIL NUCLEAR
Controversial France-Russia warship step closer to completion

Talks continue of Saab's shipyard ambition

FREMM frigate Normandie completes weapon system testing

HII lays keel for future USS Tripoli

CIVIL NUCLEAR
Aluminum-Bearing Site on Mars Draws NASA Visitor

Mars Curiosity Rover Marks First Martian Year with Mission Successes

Curiosity celebrates one-year Martian anniversary

NASA Invites Comment on Mars 2020 Environmental Impact Statement




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.