Energy News  
CIVIL NUCLEAR
Chemical complexity promises improved structural alloys for next-gen nuclear energy
by Staff Writers
Oak Ridge TN (SPX) Nov 04, 2015


In complex alloys, chemical disorder results from a greater variety of elements than found in traditional alloys. Traces here indicate electronic states in a complex alloy; smeared traces reduced electrical and thermal conductivity. Image courtesy Oak Ridge National Laboratory, U.S. Dept. of Energy. Image by G. Malcolm Stocks. For a larger version of this image please go here.

Designing alloys to withstand extreme environments is a fundamental challenge for materials scientists. Energy from radiation can create imperfections in alloys, so researchers in an Energy Frontier Research Center led by the Department of Energy's Oak Ridge National Laboratory are investigating ways to design structural materials that develop fewer, smaller flaws under irradiation.

The key, they report in the journal Nature Communications, is exploiting the complexity that is present when alloys are made with equal amounts of up to four different metallic elements.

"Chemical complexity gives us a way to modify paths for energy dissipation and defect evolution," said first author Yanwen Zhang, who directs an Energy Frontier Research Center, called "Energy Dissipation to Defect Evolution," or "EDDE," funded by the U.S. Department of Energy Office of Science.

The growing center is nearly 15 months old and brings together more than two dozen researchers with experimental and modeling expertise. EDDE has partners at Oak Ridge, Los Alamos and Lawrence Livermore national laboratories and the universities of Michigan, Wisconsin-Madison and Tennessee-Knoxville.

Radiation can harm spacecraft, nuclear power plants and high-energy accelerators. Nuclear reactions produce energetic particles--ions and neutrons--that can damage materials as their energy disperses, causing the formation of flaws that evolve over time. Advanced structural materials that can withstand radiation are a critical national need for nuclear reactor applications.

Today, nuclear reactors provide one-fifth of U.S. electricity. Next-generation reactors will be expected to serve over longer lifetimes and withstand higher irradiation levels.

In a reactor, thousands of atoms can be set in motion by one energetic particle that displaces them from sites in a crystal lattice. While most of the displaced atoms return to lattice sites as the energy is dissipated, some do not. Irradiation can damage structural materials made of well-ordered atoms packed in a lattice--even obliterating its crystallinity.

Existing knowledge of radiation effects on structural materials is mostly about reactor-core components. Over the life of a typical light water reactor, all atoms in the structural components can be displaced on average 20 times, and accumulated damage may threaten material performance. To prepare for new reactor concepts, scientists will have to design next-generation nuclear materials to withstand atoms displaced more than 200 times--a true "grand challenge."

Recipes for success
Since the dawn of the Iron Age 3,000 years ago, useful metallic alloys have typically comprised multiple phases with one or two dominate elements modified by additions of other elements. The Gateway Arch in St. Louis, for example, is a conventional stainless steel--iron with additions of chromium and nickel, low concentrations of carbon, and even smaller amounts of manganese, silicon, phosphorus and sulfur.

Recently, a very different class of materials has generated a great deal of interest. In these special alloys, several different types of atoms, in equal proportions, distribute randomly in a simple crystal lattice.

High entropy alloys comprising five or more species are exemplars. Indeed, researchers at Berkeley and Oak Ridge labs have recently shown that some of the alloys, discovered about a decade ago, exhibit exceptional strength and ductility at cryogenic temperatures. In all these alloys, chemical disorder is intrinsic to their behavior.

In comparison, the goal of the EDDE study was to find how compositional complexity can lead to differences in heat and electricity conduction and influence defect dynamics at early stages that affect the robustness of a structural material at later stages. The results revealed how advanced alloys achieve greatly enhanced irradiation performance through chemical diversity (spoiler alert: they optimize electronic structure and atomic arrangements).

It took a team with many skills to explore a novel set of alloys containing nickel and equal amounts of other elements. One recipe tried duos of ingredients (e.g., nickel-cobalt) whereas others tried triplets (e.g., nickel-chromium-cobalt) or quartets (e.g., nickel-chromium-iron-cobalt). The chemical elements, distributed randomly in the crystal lattice, create unique site-to-site, microscopic distortions. The lattice nonetheless retains its macroscopic crystalline structure.

Integrating theory and experiment, the scientists grew alloy crystals of unrivaled quality, calculated changes to electronic structures and intrinsic transport properties that were induced by chemical disorder, and confirmed the computational results with experimental measurements of each crystal's electrical resistivity and thermal conductivity.

The results from ion irradiation, modeling of defect production, ion-beam analysis and microstructural characterization of the irradiated alloys show significantly reduced defect production and damage accumulation in these materials. The findings suggest a link between slow energy dissipation and suppressed defect evolution.

"We observed suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary [alloys]," Zhang said.

A material's electronic band structure determines how well electrons can conduct electricity and heat. In a typical metal, say a metallic crystal of pure nickel, energy dissipates quickly because electrons barely scatter--when an energetic particle hits the perfect atomic ordering of the crystal, the resulting energy wave is free of obstructions and can rapidly propagate, leaving little energy at the collision site.

In the willy-nilly atomic arrangement of a multicomponent disordered alloy crystal, however, when the energetic particle hits a lattice atom, the energy encounters obstructions and stays local, and for a longer time.

The EDDE study showed that fewer and smaller defects were produced as the alloy complexity increased. It also showed dramatic improvement in properties related to resistance to radiation damage.

It turns out that just increasing the number of elements (and therefore the disorder, or entropy) in the recipe doesn't necessarily produce the best alloys for targeted functions. Determining what combinations work best depends on aspects including local structural distortions and chemical, electronic and magnetic properties of constituent atoms.

With dramatically lower electrical and thermal conductivity than traditional alloys, next-generation alloys based on recipes with high chemical disorder may slow energy dissipation and experience far fewer of the defects that weaken structural materials over time. Evidence that slow energy dissipation can remove some local defects even hints at the possibility of developing self-healing nuclear structural materials.

Further studies are needed to understand how alloy complexity can tailor material properties. The knowledge gained may spur new design principles of alloys for advanced energy systems and reduce trial-and-error to accelerate "materials by design."

"These insights into defect dynamics at the level of atoms and electrons provide an innovative path forward toward solving a long-standing challenge in structural materials," Zhang said.

The title of the paper is "Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CIVIL NUCLEAR
Bechtel Applauds Successful Licensing of Second Reactor at Watts Bar Nuclear Plant
Reston VA (SPX) Nov 02, 2015
Bechtel has applauded the historic decision Thursday by the U.S. Nuclear Regulatory Commission to grant an operating license to the Tennessee Valley Authority's Watts Bar Unit 2 in Spring City, Tennessee, the first new nuclear reactor to receive authorization to operate this century in the United States. Bechtel was the primary construction contractor on the completion of Watts Bar Unit 2 ... read more


CIVIL NUCLEAR
Determining greenhouse gas reductions for varying forms of bioenergy

Mt. Poso Bioenergy Day promotes diversion and drought solutions

DuPont Celebrates the Opening of the World's Largest Cellulosic Ethanol Plant

Making green fuels, no fossils required

CIVIL NUCLEAR
Italy's Eni reviews renewables for Algeria

New approach to supply airports with clean energy

China's Li: Beijing has 'duty to humanity' to boost green growth

There might be ways to exploit renewable energy and also allow for protecting biodiversity

CIVIL NUCLEAR
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

CIVIL NUCLEAR
Up to 400 bn euros needed for clean EU energy grid by 2050: study

National contributions provide entry point for the low-carbon transformation

Climate pledges keep 'door open' to warming under 2C

UN chief says 'no plan B or planet B' in climate talks

CIVIL NUCLEAR
Taiwan Unveils the Eco-Power Station

New design points a path to the 'ultimate' battery

Simple mathematical formula models lithium-ion battery aging

Capacitor breakthrough

CIVIL NUCLEAR
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

CIVIL NUCLEAR
Future USNS Brunswick completes acceptance trials

U.S. Navy to christen guided-missile destroyer USS Rafael Peralta

Taiwan eyes acquisition of anti-submarine warfare helicopters

Milestone achieved in construction of Royal Navy carrier

CIVIL NUCLEAR
Signs of Acid Fog Found on Mars

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.