Energy News  
CIVIL NUCLEAR
Mainz physicists propose a new method for monitoring nuclear waste
by Staff Writers
Mainz, Germany (SPX) Dec 11, 2017


This is a prototype antineutrino detector for monitoring nuclear waste repository sites.

New scientific findings suggest neutrino detectors may play an important role in ensuring better monitoring and safer storage of radioactive material in nuclear waste repository sites. Researchers at Johannes Gutenberg University Mainz (JGU) in Germany have made calculations to ascertain the neutrino radiation of spent nuclear fuel emits. Their figures show that neutrino detectors could be useful in certain scenarios.

Neutrinos undergo almost no interaction with matter, and so they can penetrate practically unhindered through the Earth and any man-made shield.

"Every second about 100 billion neutrinos per square centimeter strike the Earth from the Sun, both day and night. Because neutrinos only weakly interact with matter, they are among the most difficult elementary particles to detect," explained Professor Joachim Kopp from the PRISMA Cluster of Excellence at Mainz University. Kopp is an expert in the field of theoretical neutrino physics and received an ERC Starting Grant for his research in 2014, one of the most highly endowed awards from the EU.

The beta decay of radioactive fission products generates neutrinos in very large quantities. However, a minimum energy of 1.8 mega-electron volts is required to detect these particles via the process of inverse beta decay. Only then can they be registered in a scintillation detector, a tank filled with special mineral oils. The high-energy particles interact with the protons in the tank, emitting a characteristic light signal.

Such neutrino detectors are already being employed experimentally to monitor nuclear power plants while in operation. However, for monitoring stored nuclear waste there are, as yet, no detectors.

"In-service reactors produce considerably more neutrinos than decommissioned reactors or stored radioactive material," explained Kopp, noting that monitoring the whereabouts of nuclear waste is particularly important at present for security reasons.

Neutrino monitoring of spent nuclear fuel
For their paper in Physical Review Applied, Joachim Kopp and Vedran Brdar from JGU and Patrick Huber from Virginia Tech in the U. S. first calculated the neutrino flux emitted by radioactive strontium-90 and other fission products in spent nuclear fuel. They then considered several scenarios detailing how or where the emissions could be detected.

In one of these, a suitable detector would be particularly useful for monitoring above-ground storage facilities, for example, on-site at nuclear power plants. A neutrino detector in this scenario could detect if radioactive material had been removed without being documented.

According to the calculations, measurements using a detector with a capacity of 40 tons would have to run for about a year. "That sounds like a long time, but all that would be required would be to position the detector and wait.

The big advantage is that we could verify the contents of a container without ever having to open it up," explained Kopp. It would usually be enough to place the detector 10 to 100 meters away, for example, on a truck trailer.

According to Kopp, this method might be particularly appropriate in trying to ensure non-proliferation of nuclear weapons-grade material, which is why the European Atomic Energy Community EURATOM has already expressed an interest in this research.

In a second scenario, the physicists calculated a situation in which underground repositories are to be monitored, giving as an example the proposed Yucca Mountain repository site in Nevada. According to this, a significant neutrino flux would be detected, even on the surface of a small 10-ton tank.

"However, some realistic hazards, such as the escape of very small quantities of radioactive material, would unfortunately not be detected," said Kopp.

A third scenario that the scientists dealt with in their calculations was detecting incompletely documented storage facilities, such as those at the Hanford Site, a now-disused nuclear complex in the U. S. state of Washington from the time of the Cold War.

"In this case, the current detector technology is still not entirely sufficient, among other things because cosmic radiation distorts the measurements," said Kopp. However, the first prototypes for such detectors avoiding this problem already exist.

Research paper

CIVIL NUCLEAR
AREVA NP Maintenance Technique Reduces Frequency of Component Inspections at Two Exelon Plants
Washington DC (SPX) Dec 11, 2017
The Nuclear Regulatory Commission (NRC) recently granted inspection relief to Exelon's Byron Unit 2 and Braidwood Unit 1 following use of AREVA NP's innovative cavitation peening mitigation technique on each unit's reactor vessel closure head (RVCH). With this approval from the NRC, Exelon can now start the transition from inspecting the components every 18 months to once every 10 years. A ... read more

Related Links
Johannes Gutenberg Universitaet Mainz
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CIVIL NUCLEAR
Bristol scientists turn beer into fuel

Hydrogen gas from enzyme production

Next generation solvent contributes to next generation biofuel production from biomass

Algae could feed and fuel planet with aid of new high-tech tool

CIVIL NUCLEAR
Guanidinium stabilizes perovskite solar cells at 19 percent efficiency

India faces painful move to cleaner energy

Solar power advances possible with new 'double-glazing' device

Europe moves to grow green economy at Paris meeting

CIVIL NUCLEAR
Construction to start on $160 million Kennedy Energy Park in North Queensland

U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

CIVIL NUCLEAR
US void hard to miss at Paris climate summit

To save climate, stop investing in fossil fuels: economists

Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

CIVIL NUCLEAR
Scientists create stretchable battery made entirely out of fabric

Surrey scientists create cheap and safe electro-catalysts for fuel cells

Army researchers seek better batteries

Superior hydrogen catalyst just grows that way

CIVIL NUCLEAR
Smog should stop play, Indian doctors tell cricket bosses

World's nations adopt plan 'towards a pollution-free planet'

UN pledge to tackle lead poisoning too late for some victims

Confiscation crusaders try to save Philippine paradise

CIVIL NUCLEAR
Oil prices settle down, but still higher on North Sea outage

World Bank to stop financing oil, gas projects from 2019

Eni: More oil offshore Mexico than originally estimated

Gas prices even for now, but British pipeline problem could change that

CIVIL NUCLEAR
EU exempts fuel for ExoMars mission from Russian sanctions

Mars Rover Team's Tilted Winter Strategy Works

Brown: Clay on Mars May Have Formed in Primordial Steam Bath

Winter wanderings put Opportunity at 28 Miles on the odometer









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.